有界数列,是数学领域的定理,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。假设存在定值a,任意n有{An(n为下角标,下同)=B,称数列{An}有下界B,如果同时存在A、B时的数列{An}的值在区间[A,B]内,数列有界。
有界数列的定义:
若数列{Xn}满足:对一切n有Xn≤M其中M是与n无关的常数称数列{Xn}上有界(有上界)并称M是他的一个上界,对一切n有Xn≥m其中m是与n无关的常数称数列{Xn}下有界(有下界)并称m是他的一个下界,一个数列{Xn},若既有上界又有下界,则称之为有界数列。显然数列{Xn}有界的一个等价定义是:存在正实数X,使得数列的所有项都满足|Xn|≤X,n=1,2,3,……。
小时候我有很多梦想,当老师或是做一名**,可长大了我发现,这些梦想都破灭了,饭都吃不上,还谈什么梦想。
本站声明:本站部分文章来自网络,由用户上传分享,如若内容侵犯了您的合法权益,可联系我们进行处理。文章仅供大家学习与参考,不**本站立场。